α-Telluration of 2-acetylthiophene: Electronic influence of the heteroaromatic moiety on solid state structures

Ashok K.S. Chauhan ${ }^{\text {a, } *, ~ P o o r n i m a ~ S i n g h ~}{ }^{\text {a }}$, Ramesh C. Srivastava ${ }^{\text {a }}$, Ray J. Butcher ${ }^{\text {b }}$, Andrew Duthie ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Lucknow, Lucknow 226007, India
${ }^{\mathrm{b}}$ Department of Chemistry, Howard University, Washington DC 20059, USA
${ }^{\text {c }}$ School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia

A R T I C L E I N F O

Article history:

Received 23 June 2010
Received in revised form
16 July 2010
Accepted 27 July 2010
Available online 3 August 2010

Keywords:

Tellurium insertion
2-Acetylthiophene
Sterically hindered organotelluriums Dialkyltelluroether
Intramolecular secondary bonding interactions

Abstract

Room temperature oxidative addition of α-bromo-2-acetylthiophene to elemental tellurium and aryltellurium(II) bromide provides direct routes to (2-thiophenoylmethyl)tellurium(IV) dibromides, (2$\left.\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2}\right)_{2} \mathrm{TeBr}_{2}(\mathbf{1 b})$ and 2- $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2} \mathrm{ArTeBr}_{2}\left(\mathrm{Ar}=1-\mathrm{C}_{10} \mathrm{H}_{7}, \mathrm{Npl}, \mathbf{2 b} ; 2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}, \mathrm{Mes}, \mathbf{3 b}\right)$. The chloro analogues, $2-\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2} \mathrm{ArTeCl}_{2}(\mathrm{Ar}=\mathrm{Npl}, \mathbf{2 a}$; Mes, 3a) were prepared by the condensation reaction of the parent methyl ketone with $\mathrm{NplTeCl}_{3}$ or $\mathrm{MesTeCl} l_{3}$. Metathesis of these products with an alkali iodide affords the iodo analogues 1c, 2c and 3c. These diorganotellurium dihalides are reduced with aqueous bisulfite to diorganotellurides $\mathbf{1 - 3}$, which can be oxidized readily with dihalogens to the desired diorganotellurium(IV) dihalides. Compound $\mathbf{1}$ is a rare example of a symmetrical telluroether with $\mathrm{C}_{\mathrm{sp} 3}-\mathrm{Te}-\mathrm{C}_{\mathrm{sp} 3}$ grouping that has been characterized by single-crystal diffraction techniques. Preference of the 2-thiophenoylmethyl ligand for small-bite (C, O) chelation over less strained (C, S) coordination is evident in the crystal structures of the Te(IV) compounds $\mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$. The unexpected transoidal orientation of the two acylmethyl ligands in the solid state molecular configuration of symmetrical diorganotellurium(IV) dibromide $\mathbf{1 b}$ appears to be a combined effect of electronic repulsion due to the thiophene moieties and steric repulsion of bromo ligands.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Functional group promoted metallation of organic substrates makes available organolithiums that readily undergo the insertion of elemental tellurium into the carbon-metal bond to afford lithium arenetellurolates. This synthetic protocol is especially effective in the ortho telluration of heteroaromatic substrates [1]. Lithium or sodium arenetellurolates are very good nucleophilic species and can be easily alkylated by alkyl halides to obtain alkylaryltellurides [2]. However, the reaction of lithium 2-thiophenetellurolates with acylmethyl halides results in reductive dehalogenation to give parent ketones [3] instead of the expected acylmethyl(2-thiophenyl)tellurides. Another strategy of α-telluration of acylmethanes is their electrophilic substitution reaction with TeCl_{4} or ArTeCl_{3} [4-8]. The condensation reaction of TeCl_{4} with simple arylmethyl ketones such as acetophenone, its ring substituted derivatives $[3,9-11]$ and substituted acetylacetones $[12,13]$

[^0]eliminates 2 mol of HCl to produce organotellurium(IV) dichlorides. However, organotellurium(IV) trichlorides were isolated in the reaction of TeCl_{4} with 2,6-diacetylpyridine, 2-acetylcyclohexanone or 3-acetyl-7-methoxycoumarin where dehydrochlorination was limited to only 1 mol [14]. Although the condensation product of TeCl_{4} with 2-acetylthiophene, the bis(2-thiophenoylmethyl)tellurium dichloride has been obtained in poor yields $[3,10,14]$ the reaction product of TeCl_{4} with 2-acetylpyridine still remains uncharacterized [14]. These observations highlight the substantial role heteroaromatic moiety electronic factors play in the electrophilic reactions of their acetyl derivatives.

A simple and direct route to bis(acylmethyl)tellurium(IV) dibromides, practiced in our laboratory, involves oxidative insertion of elemental tellurium into the $\mathrm{C}-\mathrm{Br}$ bond of $\mathrm{RCOCH}_{2} \mathrm{Br}$. In continuation, we now describe the isolation and structural characterization of (2-thiophenoylmethyl)tellurium(II and IV) derivatives which have been obtained at ambient conditions by (i) oxidative addition of α-bromo/iodo-2-acetylthiophenes to elemental tellurium and (ii) electrophilic substitution of 2-acetylthiophene with the aryltellurium trichlorides that bear a sterically cumbersome aryl ligand bound to tellurium atom.

2. Results and discussion

2.1. Synthesis

Thermally labile α-bromo-2-acetylthiophene adds to elemental tellurium at room temperature to afford $\left(2-\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2}\right)_{2} \mathrm{TeBr}_{2}$ and to ArTeBr (prepared in situ from $\mathrm{Ar}_{2} \mathrm{Te}_{2}$ and $\mathrm{Br}_{2} ; \mathrm{Ar}=\mathrm{Npl}$, Mes), to give $2-\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2} \mathrm{ArTeBr}_{2}$. The chloro analogues, $\left(2-\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)\right.$ $\left.\mathrm{COCH}_{2}\right)_{2} \mathrm{TeCl}_{2}$ and $2-\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2} \mathrm{ArTeCl}_{2}$, are obtained by electrophilic substitution of the parent ketone with TeCl_{4} and ArTeCl_{3}, respectively. Iodo analogues are prepared either by oxidative addition of α-iodo-2-acetylthiophene to tellurium powder to afford $\mathbf{1 c}$ or by metathesis of the bromo/chloro compounds (1b, 2a, 3a) with alkali metal iodides. Reduction of these dihalides with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ affords the corresponding tellurides, $(\mathbf{1}, \mathbf{2}, \mathbf{3})$ which are readily oxidized with dihalogens to afford the corresponding diorganotellurium(IV) dihalides (Scheme 1).

2.2. Spectroscopic studies

All dihalides ($\mathbf{1 a - 1 c}, \mathbf{2 a}-\mathbf{2 c}$ and $\mathbf{3 a - 3 c}$) and tellurides $\mathbf{1}$ and $\mathbf{3}$ are sharp melting colorless to orange solids, soluble in chloroform and dichloromethane. Dialkyltelluride $\mathbf{1}$ and the $\mathrm{Te}(\mathrm{IV})$ diiodides (1c, 2c and 3c) are stable for weeks only when stored at low temperature $\left(-10{ }^{\circ} \mathrm{C}\right)$, while the other new organotellurium derivatives are fairly stable at ambient conditions. The $v(C O)$ absorptions appearing at $\sim 1630 \mathrm{~cm}^{-1}$ in the infrared spectra of 1a

Table 1
Important chemical shifts (in ppm) for thiophenoylmethyltellurium derivatives.

	${ }^{1} \mathrm{H}$		${ }^{13} \mathrm{C}$			${ }^{125} \mathrm{Te}$
	CH_{2}	CH_{3}	CH_{2}	CH_{3}	CO	
1a	5.19		56.9		184.2	751
1b	5.32		54.8		184.4	686
1c	4.30		51.2		186.0	602
2a	5.60		65.6		183.9	764
2b	5.75		64.0		184.0	697
2c	5.77					606, 984
3a	5.54	2.34 (p-Me)	62.2	21.0 (p-Me)	184.4	784
		2.79, 2.82 (o-Me)		23.5, 24.1 (o-Me)		
3b	5.70	2.34 (p-Me)	61.2	21.0 (p-Me)	184.5	704
		2.75, 2.79 (o-Me)		23.3, 24.6 (o-Me)		
3 c	5.73	2.32 (p-Me)	58.9	21.0 (p-Me)		590, 885
		2.64 (o-Me)		23.2, 25.7 (o-Me)		
1	4.18		10.1		190.8	559
2	4.17					
3	3.94	2.29 (p-Me)				
		2.51(o-Me)				

and $\mathbf{1 b}$ are at lower wave number than that for the parent ketone, 2-acetylthiophene.

Important NMR chemical shifts are listed in Table 1 for critical comparison. Methylene protons, appearing at $\sim 4.1 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectra of Te (II) derivatives $\mathbf{1 - 3}$, are appreciably shielded when compared to their $\mathrm{Te}(\mathrm{IV})$ analogues ($\delta 4.3-5.8 \mathrm{ppm}$). Protons of the thiophene moiety appear in the aromatic region, along with

Fig. 1. Molecular structure of 1. Selected interatomic distances (\AA) and angles (${ }^{\circ}$): Te-C1a 2.170(2), Te-C1b 2.164(2), Te $\cdots 01 \mathrm{a} 3.588(2)$, Te $\cdots 01 \mathrm{~b} 3.609(2)$, $01 \mathrm{a} \cdots \mathrm{S} 13.000(2)$, O1b \cdots S2 2.93(2), C1a-Te-C1b 94.66(8), 01a \cdots Te-C1b 66.96(6), O1b \cdots Te-C1a 108.06(6), 01a \cdots S1-C6a 142.60(9), O1b \cdots S2-C6b 144.29(9).
the ring protons of the naphthyl and the mesityl groups. Appearance of separate signals ($1: 1$) for the ortho methyls of the mesityl group in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a} \mathbf{- 3 c}$ is indicative of restricted rotation of the benzene ring about the $\mathrm{Te}-\mathrm{C}(\mathrm{Mes})$ bond. The ${ }^{13} \mathrm{C}$ NMR chemical shifts for the carbonyl carbon appear in the range 184-191 ppm and the methylene carbon between 56 and 66 ppm for $\mathrm{Te}(\mathrm{IV})$ derivatives and at 10.1 ppm in case of $\mathbf{1}$. All the symmetrical diorgantellurium derivatives ($\mathbf{1}, \mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}$) give rise to a single ${ }^{125} \mathrm{Te}$ NMR resonance indicating the presence of only one Te containing species in their solutions. While the chemical shift for telluride $\mathbf{1}$ ($\delta 559 \mathrm{ppm}$) is towards high field, those for the Te(IV) derivatives are consistent with the electronegativity of the halo ligands ($\delta 751$ (1a), 686 (1b), $602 \mathrm{ppm}(\mathbf{1 c})$). Two ${ }^{125}$ Te chemical shifts are observed for asymmetric diorganotellurium(IV) diiodides 2c and 3c, indicating that they are not as stable to dispropotionation, at least in solution, as their chloro or bromo analogues.

2.3. Crystal structures

The molecular structures of $\mathbf{1}, \mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$ are shown in Figs. $1-5$ with selected bond parameters collected in the caption to each figure. Asymmetric units in each case consist of one molecule. Interestingly, 2-thiophenoylmethyl, the functionalized organic
ligand, adopts planar cis geometry (see Scheme 1) invariably among the molecular structures of all the organotelluriums crystallographically characterized in the present study. The near linearity attained by the $\mathrm{O} \cdots \mathrm{S}-\mathrm{C}_{\text {trans }}$ triad ($\angle \mathrm{O}-\mathrm{S}-\mathrm{C}_{\text {trans }}$ ranges from 141.9 $(1)^{\circ}$ in 3a to $144.3(1)^{\circ}$ in 1) makes the overlap of vacant $\boldsymbol{\sigma}^{*}\left(\mathrm{~S}-\mathrm{C}_{\text {trans }}\right)$ molecular orbital with filled p-orbital on the O atom feasible. The observed shorter $\mathrm{d}(\mathrm{S}, \mathrm{O})$ compared to $\Sigma \mathrm{r}_{\mathrm{vdw}}(\mathrm{S}, \mathrm{O})$, $3.32 \AA$, appears to be a manifestation of intramolecular secondary bonding interaction that stabilizes the observed cis conformation of the bifunctional organic ligand.

The central $\mathrm{Te}(\mathrm{IV})$ atom among $\mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$, imparts trigonal bipyramidal primary geometry with expected $\mathrm{X}-\mathrm{Te}-\mathrm{X}$ and $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ angular distortions due to its lone pair. However, the sterically demanding 1-naphthyl and mesityl ligands in $\mathbf{2 a}, \mathbf{2 b}$ and 3a, appreciably widen the $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ angle in comparison to $\mathbf{1 b}$ (see Table 2). Among the molecular structures of unsymmetrical diorganotellurium(IV) dihalides $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$, the carbonyl O atom of the sole functionalized ligand is involved simultaneously in the intramolecular secondary bonding interaction to either of its heavier congeners. The observed internuclear distance between O and Te atoms, which is shorter than the sum of their van der Waals radii $[\mathrm{d}(\mathrm{Te}, \mathrm{O})=2.983(3)(\mathbf{2 a}), 2.982(4)(\mathbf{2 b}), 2.862(2) \AA(\mathbf{3 a}) ; \Sigma$ $\left.\mathrm{r}_{\mathrm{vdw}}(\mathrm{Te}, \mathrm{O})=3.58 \AA\right]$ and near linearity of the $\mathrm{O} \cdots \mathrm{Te}-\mathrm{C}_{\text {trans }}$ triad ($\angle \mathrm{O}-\mathrm{Te}-\mathrm{C}_{\text {trans }}$ measures $150.3(1)^{\circ}, 149.6(2)^{\circ}$ and $162.3(1)^{\circ}$ in 2a,

Fig. 2. Molecular structure of 1b. Selected interatomic distances (\AA) and angles (${ }^{\circ}$): $\mathrm{Te}-\mathrm{C} 1 \mathrm{a} 2.133(4), \mathrm{Te}-\mathrm{C} 1 \mathrm{~b} 2.157(5), \mathrm{Te}-\mathrm{Br} 1$ 2.7143(6), $\mathrm{Te}-\mathrm{Br} 2$ 2.6196(8), $\mathrm{Te} \cdots \mathrm{O} \mathrm{a} 2.880(4)$, Te \cdots O1b $3.553(4)$, O1a \cdots S1a 3.001(3), O1b \cdots S1ba 2.938(6), C1a-Te-C1b 94.9(2), Br1-Te-Br2 177.50(2), O1a $\cdots \mathrm{Te}-\mathrm{C} 1 \mathrm{~b}$ 148.1(2), O1b $\cdots \mathrm{Te}-\mathrm{C} 1 \mathrm{a}$ 60.1(1), O1a $\cdots \mathrm{S} 1 \mathrm{a}-\mathrm{C} 6 \mathrm{a}$ 142.1(2), 01b \cdots S1ba-C6ba 143.5(3).

Fig. 3. Molecular structure of 2a. Selected interatomic distances (\AA) and angles (${ }^{\circ}$): $\mathrm{Te}-\mathrm{C} 1 \mathrm{a} 2.126(3), \mathrm{Te}-\mathrm{C} 1 \mathrm{~b} 2.124(3), \mathrm{Te}-\mathrm{Cl} 12.545(1), \mathrm{Te}-\mathrm{Cl} 22.477(1), \mathrm{Te} \cdots \mathrm{O} \mathrm{a} 2.984(3), 01 \mathrm{a} \cdots \mathrm{S} 1 \mathrm{a}$ 2.995(3), C1a-Te-C1b 98.1(1), Cl1-Te-Cl2 169.93(4), O1a‥Te-C1b 150.2(1), O1a‥S1a-C6a 143.9(2).

2b and 3a respectively) substantiate the presence of attractive 1,4$\mathrm{Te} \cdots \mathrm{O}$ interaction. This interaction brings the O atom in to the equatorial $\mathrm{C} 1 \mathrm{~A}-\mathrm{Te}-\mathrm{C} 1 \mathrm{~B}$ plane, reduces the tetrahedral angle $\mathrm{Te}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$ to $106.3^{\circ}, 106.5^{\circ}$ and 105.1° in $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$ respectively and marginally the trans $\mathrm{Te}-\mathrm{C}$ (aryl) bond length [d (Te-C(aryl)) $=2.124(3)(\mathbf{2 a}), 2.129(5)(\mathbf{2 b}), 2.131(2) \AA(\mathbf{3 a}) ; c f$. $2.103 \AA$ in $\mathrm{Npl}_{2} \mathrm{TeCl}_{2}$ [15] and $2.100(2) \AA$ in $\left(2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{TeCl}_{2}$ [16]. The functionalized ligand thus prefers (C, O), rather than (C, S), mode of chelation, though the latter, involving its trans conformation, would have resulted in the formation of a less strained fivemember intramolecular ring.

In the crystal structure of symmetrically functionalized diorganotellurium(IV) $\mathbf{1 b}$ (Fig. 2), one of the thiophene rings is twofold disordered with 70:30 occupancies. Interestingly, the observed molecular configuration is unique. Among the molecular structures of bis(acylmethyl/amidomethyl)tellurium(IV) dihalides $\left[\left(\mathrm{RCOCH}_{2}\right)_{2}\right.$ $\mathrm{TeX}_{2}, \mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{t}-\mathrm{Bu}, 4-\mathrm{YC}_{6} \mathrm{H}_{4}, \mathrm{NH}_{2}, \mathrm{NEt}_{2}$, NMePh and $\left.\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}\right]$ described earlier by us [7,8,17-20], both the carbonyl functionalized organic ligands exhibit (C, O) chelating behavior and impart six-coordination to the central Te atom. The skeletal frameworks of the organic ligands, $\mathrm{Te}-\mathrm{C}-\mathrm{C}(\mathrm{O})-\mathrm{C} / \mathrm{N}$, in these compounds are invariably almost coplanar, with the equatorial $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ plane and the cisoidal orientation of the ligands imparting a butterfly shape $C_{2 v}$ molecular symmetry. In the anticipated molecular structure of 1b (see Scheme 1), by analogy to the structure of its chloro analogue, $\left(2-\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right) \mathrm{COCH}_{2}\right)_{2} \mathrm{TeCl}_{2}$ [21], the cisoidal 2-thiophenoyl moieties would bring five electron-rich chalcogen atoms in the
domain of the lone pair of the central atom. However, the steric and electronic repulsions appear to predominate the subtle $1,4-\mathrm{Te} \cdots \mathrm{O}$ secondary bonding interactions. As a consequence, while one of the organic ligands retains its (C, O) chelating mode of coordination in the observed structure of $\mathbf{1 b}$, the free rotation about the $\mathrm{Te}-\mathrm{C}$ bond allows the other to move its carbonyl O atom out of the equatorial plane (to an almost transoidal conformation) and close to the van der Waals distance from the $\mathrm{Te}(\mathrm{IV})[\mathrm{d}(\mathrm{Te}, \mathrm{O} 1 \mathrm{~B})=3.55 \AA$ A. The intraligand $\mathrm{S} \cdots \mathrm{O}$ secondary bonding interaction and hence planar cis conformation of this monodentate organic ligand is, however, retained in the molecule of $\mathbf{1 b}$ and the five-coordinate central Te atom becomes accessible for intermolecular $\mathrm{Te} \cdots \mathrm{X}$ secondary bonding interactions. The centrosymmetric zero-dimensional dimeric units that are realized via reciprocatory $\mathrm{Te} \cdots \mathrm{Br} 1$ interactions self-assemble, in the crystal lattice of $\mathbf{1 b}$, by means of $\mathrm{C}-\mathrm{H} 1 \mathrm{BA} \cdots \mathrm{O} 1 \mathrm{~A} \mathrm{H}$-bonding interactions into one-dimensional supramolecular arrays (Figure S1).

Among the diorganotellurides, $\mathbf{1}$ and $\mathbf{3}$ were obtained in the crystalline state and single-crystal data for the symmetric telluroether ($\mathbf{1}$) were collected. Absence of axial halo ligands in it seems to provide steric freedom to the 2-thiophenyl moieties. Free rotation about the Te - Cbonds allows the organic ligands to adopt transoidal orientation with minimum electronic repulsion, at least in the solid state. The interplanar angles between the equatorial $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ plane and the mean planes comprising of skeletal atoms of the organic ligands are 82.42(5) ${ }^{\circ}$ and $72.46(6)^{\circ}$ and the internuclear distances between the $\mathrm{Te}(\mathrm{II})$ and carbonyl O atoms $[\mathrm{d}(\mathrm{Te}, \mathrm{O})=3.588(2) \AA ̊$ and

Fig. 4. Molecular structure of 2b. Selected interatomic distances (\AA) and angles (\circ): $\mathrm{Te}-\mathrm{C} 1 \mathrm{a} 2.129(5)$, $\mathrm{Te}-\mathrm{C} 1 \mathrm{~b} 2.133(4), \mathrm{Te}-\mathrm{Br} 12.6361(5), \mathrm{Te}-\mathrm{Br} 2$ 2.7071(6), $\mathrm{Te} \cdots \mathrm{O}$ b 2.982(4), 01b \cdots S1b $2.984(5)$, C1a-Te-C1b 98.0(2), Br1-Te-Br2 171.14(2), O1b $\cdots \mathrm{Te}-\mathrm{C} 1 \mathrm{a}$ 149.6(2), O1b \cdots S1b-C6b 144.0(3).

Fig. 5. Molecular structure of 3a. Selected interatomic distances (\AA) and angles (\circ): $\mathrm{Te}-\mathrm{C} 1 \mathrm{a}$ 2.131(2), $\mathrm{Te}-\mathrm{C} 1 \mathrm{~b}$ 2.131(2), $\mathrm{Te}-\mathrm{Cl} 1$ 2.4919(6), $\mathrm{Te}-\mathrm{Cl} 22.5127(6), \mathrm{Te} \cdots 01 \mathrm{~b} 2.862(2)$, 01b \cdots S1b 3.000(2), C1a-Te-C1b 108.49(8), Cl1-Te-Cl2 173.32(2), O1b \cdots Te-C1a 162.29(6), 01b \cdots S1b-C6b 141.9(1).
$3.609(2) \AA ̊]$ are comparable to $\Sigma r_{\mathrm{vdw}}(\mathrm{Te}, \mathrm{O})$. Thus, the molecular structure of $\mathbf{1}$ is devoid of intramolecular $\mathrm{Te} \cdots \mathrm{O}$ attractive interactions that are reported to be present in analogous compounds, (4$\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2}\right)_{2} \mathrm{Te}$ and $\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{Te}$ [19,22]. Instead, reciprocatory intermolecular $\mathrm{Te} \cdots \mathrm{O}$ secondary bonding interactions that give rise to centrosymmetric zero-dimensional supramolecular units in its crystal packing (Figure S2) may be substantiated from the $\mathrm{d}(\mathrm{Te}, \mathrm{O} 1 \mathrm{~B})$ of $3.485(2) \AA$ and $\angle \mathrm{O} 1 \mathrm{~B}-\mathrm{Te}-\mathrm{C}_{\text {trans }}$ of $151.87^{\circ}(7)$.

2.4. Conclusion

Oxidative addition of the aroylmethyl bromide to $\mathrm{Te}(0)$ and Te (II) provides a direct route to (2-thiophenoylmethyl)tellurium(IV) dibromides, which are readily reduced to the corresponding telluroethers. As a consequence of secondary bonding interaction between the lighter chalcogen atoms, the planar functionalized organic ligand invariably adopts cis-S, O configuration among all the $\mathrm{Te}(\mathrm{IV})$ and $\mathrm{Te}(\mathrm{II})$ derivatives. The (C, O) mode of chelation of the ligand caused by $1,4-\mathrm{Te} \cdots \mathrm{O}$ secondary bonding interaction is preferred to the (C, S) mode. Among (2-thiophenoylmethyl)aryltellurium(IV) dihalides, the central Te atom is five-coordinate even in the presence of a bulky aryl ligand. Interestingly, the anticipated six-coordination of Te atom in bis(2-thiophenoylmethyl)tellurium (IV) dibromide is not realized, possibly as a combined effect of electronic repulsion due to the thiophene moieties and steric hinderance of bromo ligands.

3. Experimental

3.1. General procedures

Preparative work was performed under dry nitrogen. Melting points were recorded in capillary tubes and are uncorrected. All solvents were purified and dried before use, with α-bromoacetylthiophene being obtained as pale yellow lachrymatory oil by bromination of 2-acetylthiophene (Merck, Germany) in glacial acetic acid. 1-Naphthyltellurium trichloride and mesityltellurium

Table 2
Important bond angles and distances (${ }^{\circ}$, \AA) in compounds $\mathbf{1}, \mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b} \& \mathbf{3 a}$.

	$\mathrm{C}-\mathrm{Te}-\mathrm{C}$	$\mathrm{Te}-\mathrm{C}-\mathrm{C}$	$\mathrm{O} \cdots \mathrm{Te}-\mathrm{C}_{\text {trans }}$	$\mathrm{Te} \cdots \mathrm{O}$	$\mathrm{Te}-\mathrm{C}(\mathrm{Ar})$
$\mathbf{1}$	$94.7(1)$	$110.5(2)$	$151.9(1)$	$3.485(2)$	
$\mathbf{1 b}$	$94.9(2)$	$105.9(3)$	$148.1(2)$	$2.880(4)$	
$\mathbf{2 a}$	$98.2(1)$	$106.3(2)$	$150.3(1)$	$2.983(3)$	$2.124(3)$
$\mathbf{2 b}$	$98.0(2)$	$106.5(3)$	$149.6(2)$	$2.982(4)$	$2.129(5)$
3a	$108.5(1)$	$105.1(1)$	$162.3(1)$	$2.862(2)$	$2.131(2)$

trichloride were prepared by the chlorination of their corresponding ditellurides with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$. IR spectra were recorded as KBr pellets using a Perkin-Elmer RX1 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300.13 MHz in CDCl_{3} on a Bruker DRX300 spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(100.54 \mathrm{MHz})$ and ${ }^{125} \mathrm{Te}$ $\left\{{ }^{1} \mathrm{H}\right\}(126.19 \mathrm{MHz})$ NMR spectra were recorded in CDCl_{3} on a JEOL Eclipse Plus 400 NMR spectrometer, using $\mathrm{Me}_{4} \mathrm{Si}$ and $\mathrm{Me}_{2} \mathrm{Te}$ as internal standards. Microanalyses were carried out using a Carlo Erba 1108 analyzer. Tellurium was estimated volumetrically.

3.2. Syntheses

3.2.1. Syntheses of symmetrical diorganotellurium derivatives

Compound 1b: Freshly ground tellurium powder (0.50 g , $3.94 \mathrm{mmol})$ and α-bromoacetylthiophene ($1.0 \mathrm{~mL}, 7.87 \mathrm{mmol}$) were stirred together at room temperature for 24 h . A thick paste was formed that was washed with diethyl ether and extracted with dichloromethane $(200 \mathrm{~mL})$. The extract was passed through a small silica column and the solvent reduced to about 5 mL by distillation. Addition of hexane precipitated a colorless solid that was recrystallized from dichloromethane to give $\mathbf{1 b}$ as pale yellow rectangular crystals. Yield: 1.1 g (52\%). M.p.: $185{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{TeBr}_{2}$ (537.74): C, 26.80; H, 1.87; Te, 23.73. Found: C, 26.80; H, 2.00; Te, 23.85. IR (cm^{-1}): $1630.8(v \mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 5.32$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $7.21-7.24(\mathrm{t}, 1 \mathrm{H}$, ring proton), $7.83-7.85(\mathrm{~d}, 2 \mathrm{H}$, ring protons) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 54.8\left(\mathrm{CH}_{2}\right), 128.8,135.1,137.0$ (ring carbons), 184.4 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 686 \mathrm{ppm}$.

Compound 1c: A solution of $\mathbf{1 b}(0.27 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane (50 mL) was stirred with $\mathrm{KI}(0.33 \mathrm{~g}, 2.0 \mathrm{mmol})$ for 5 h . Potassium halides were removed by filtration and excess solvent was removed by distillation. An orange solid settled on cooling and was recrystallized from chloroform/hexane. Yield: $0.22 \mathrm{~g}(69 \%$ with respect to $\mathbf{1 b})$. M.p.: $168{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{TeI}_{2}$ (631.75): C, 22.81; H, 1.60; Te, 20.20. Found: C, 22.62; H, 1.59; Te, 20.10; ${ }^{1} \mathrm{H}$ NMR: $\delta 4.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.15-7.18(\mathrm{t}$, 1 H , ring proton), $7.69-7.70$ (d, 1 H , ring proton), $7.79-7.81$ (d, 1 H , ring proton) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 51.2\left(\mathrm{CH}_{2}\right), 128.4,133.4,135.1$, 140.4 (ring carbons), 186.0 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 602 \mathrm{ppm}$.

Alternatively, 1c was also obtained when tellurium powder ($0.13,1.0 \mathrm{mmol}$) and α-iodoacetylthiophene [prepared by stirring α-bromoacetylthiophene ($0.26 \mathrm{~mL}, 2.0 \mathrm{mmol}$) with KI (0.35 g , 2.1 mmol) in 1 mL acetone for 1 h were stirred together at room temperature for 2 h . An orange paste formed and was extracted with dichloromethane (20 mL), passed through a small silica column and the solvent reduced to 2 mL by distillation. Addition of petroleum ether ($40-60$) and cooling afforded 1 c as an orange solid. Yield: 0.35 g (56% with respect to Te). M.p.: $168{ }^{\circ} \mathrm{C}$.

Compound 1: A solution of $\mathbf{1 b}(0.27 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane (10 mL) and diethyl ether (50 mL) was stirred with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(0.10 \mathrm{~g}, 0.53 \mathrm{mmol})$ for 1 h at $0^{\circ} \mathrm{C}$. The yellow organic layer was separated, washed with water $(4 \times 20 \mathrm{~mL})$, and passed through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was reduced under vacuum at room temperature to about 2 mL , 3-4 drops of dichloromethane were added and the solution was kept in a deep freezer, affording yellow hexagonal crystals of 1. Yield: $0.13 \mathrm{~g}(66 \%)$. M.p.: $85{ }^{\circ} \mathrm{C}$ (Ref. [3] 93-94 ${ }^{\circ} \mathrm{C}$). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Te}$ (377.94): C, 38.14; H, 2.67; Te, 33.76. Found: C, 38.24; H, 2.70; Te, 33.85. ${ }^{1} \mathrm{H}$ NMR: $\delta 4.18$ (s, 2H, CH ${ }_{2}$), 7.15 ($\mathrm{s}, 1 \mathrm{H}$, ring proton), $7.65-7.67(\mathrm{~d}, 1 \mathrm{H}$, ring proton), 7.80 (s, 1 H , ring proton) ppm. ${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 10.1\left(\mathrm{CH}_{2}\right), 128.3,132.9,134.4,142.2$ (ring carbons), 190.8 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 559 \mathrm{ppm}$.

Compound 1a: Addition of a solution of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(0.12 \mathrm{~mL}$, 1.5 mmol) in dichloromethane (5 mL) to a cooled light yellow solution of $1(0.19 \mathrm{~g}, 0.50 \mathrm{mmol})$ in the same solvent (20 mL) resulted in the precipitation of $\mathbf{1 a}$ as a white solid that was collected by filtration. Recrystallization from dichloromethane gave 1a as white needles. Yield: 0.16 g (73% with respect to $\mathbf{1}$). M.p.: $180{ }^{\circ} \mathrm{C}$ dec (Ref. [3] $180-182{ }^{\circ} \mathrm{C} \mathrm{dec}$). IR $\left(\mathrm{cm}^{-1}\right)$: 1629.1 ($火 \mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.19$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 7.23 ($\mathrm{s}, 1 \mathrm{H}$, ring proton), $7.83-7.84$ (d, 2H, ring protons) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 56.9\left(\mathrm{CH}_{2}\right)$, 128.8, 135.1, 136.9, 140.9 (ring carbons), 184.2 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 751 \mathrm{ppm}$.

Compound 1a was also prepared by condensation of TeCl_{4} ($0.54 \mathrm{~g}, 2.0 \mathrm{mmol}$) with 2-acetylthiophene ($0.54 \mathrm{~mL}, 5.0 \mathrm{mmol}$) in refluxing chloroform (10 mL) for 4 h . The color of the solution changed from yellow to black as HCl evolved. Chloroform (20 mL) was added and the solution passed through a small silica column. Removal of excess solvent followed by cooling gave 1a as colorless solid which was recrystallized from dichloromethane. Yield: 0.28 g (32\%). M.p.: $180^{\circ} \mathrm{C}$ dec.

3.2.2. Synthesis of unsymmetrical diorganotellurium dichlorides

Compound 2a: A mixture of 1-naphthyltellurium trichloride ($0.18 \mathrm{~g}, 0.50 \mathrm{mmol}$) and two-fold excess of 2-acetylthiophene ($0.11 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was stirred together at room temperature under a flow of dry nitrogen for 12 h . The resulting paste was washed with cold diethyl ether ($5 \times 10 \mathrm{~mL}$), dissolved in dichloromethane (20 mL) and passed through a short silica column. The solvent was reduced to 10 mL and petroleum ether (40-60) added to afford 2a as a cream colored solid that was recrystallized from dichloromethane. Yield: $0.16 \mathrm{~g}(69 \%)$. M.p.: $168{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{OSTeCl}_{2}$ (450.84): C, 42.63; H, 2.68; Te, 28.30. Found: C, 42.67; H, 3.00; Te, 28.40. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.60$ (s, 2H, CH ${ }_{2}$), 7.24 (t, 1H, thiophene ring), $7.62-8.28\left(\mathrm{~m}, 9 \mathrm{H}\right.$, aromatic protons) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 65.6\left(\mathrm{CH}_{2}\right), 126.4,126.8,127.3,128.2,128.8,129.5,131.9$, 132.7, 132.8, 133.4, 134.3, 135.2, 137.0, 140.3 (aromatic carbons), 183.9 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 764 \mathrm{ppm}$.

Compound 3a was prepared similarly from mesityltellurium trichloride ($0.18 \mathrm{~g}, 0.50 \mathrm{mmol}$) and 2-acetylthiophene (0.11 mL , 1.0 mmol). Yield: $0.15 \mathrm{~g}(68 \%)$. M.p.: $152{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSTeCl}_{2}$ (442.86): C, 40.68; H, 3.64; Te, 28.81. Found: C, 40.57; H, 3.77; Te, 28.60. ${ }^{1} \mathrm{H}$ NMR: $\delta 2.34$ (s, 3H, p-Me), 2.79, 2.82 ($2 \mathrm{~s}, 6 \mathrm{H}, o-\mathrm{Me}$), 5.54 (s, 2H, CH2), 7.00 ($\mathrm{s}, 1 \mathrm{H}, m-\mathrm{H}$ mesityl ring), 7.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{m}$-H mesityl ring), 7.22 (t, 1 H , thiophene ring), $7.83-7.87$ (m, 2 H , thiophene ring) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 21.0$ ($p-\mathrm{Me}$), 23.5 ($o-\mathrm{Me}$), 24.1 ($o-\mathrm{Me}$), $62.2\left(\mathrm{CH}_{2}\right), 128.8,130.4,131.6,134.8,134.9,136.8,140.0$, 140.6, 141.0, 142.3 (aromatic carbons), 184.4 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 784 \mathrm{ppm}$.

3.2.3. Reduction of 2a, 3a to 2, $\mathbf{3}$

Compound 2: A solution of $\mathbf{2 a}(0.23 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane (20 mL) was shaken with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
($0.09 \mathrm{~g}, 0.47 \mathrm{mmol}$) for 20 min . The yellow organic layer was separated, washed with water ($4 \times 20 \mathrm{~mL}$) and passed through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed completely under vacuum to afford 2 as red oil. Yield: $0.09 \mathrm{~g}(47 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta 4.17$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $7.08-8.29$ ($\mathrm{m}, 10 \mathrm{H}$, aromatic protons) ppm.

Compound 3: A solution of $\mathbf{3 a}(0.22 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane (5 mL) and diethyl ether $\sim 50 \mathrm{~mL}$ was shaken with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(0.09 \mathrm{~g}, 0.47 \mathrm{mmol})$ for 30 min . The yellow organic layer was separated, washed with water ($4 \times 20 \mathrm{~mL}$) and passed through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was reduced to about 2 mL , diluted with hexane (5 mL) and the solution kept in a deep freezer. The resulting yellow crystalline solid was recrystallized from diethyl ether to give $\mathbf{3}$ as yellow rectangular crystals. Yield: 0.08 g (43\%). M.p.: $72{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSTe}$ (371.95): C, 48.44; H, 4.34; Te, 34.31. Found: C, 48.24; H, 4.30; Te, 34.65. ${ }^{1} \mathrm{H}$ NMR: $\delta 2.29$ (s, 3H, p-Me), 2.51 (s, 6H, o-Me), 3.94 ($\mathrm{s}, 2 \mathrm{H}$, CH_{2}), 6.88-7.56 (m, 5H, aromatic protons) ppm.

3.2.4. Oxidative addition reactions of $\mathbf{2 , 3}$ with dihalogens

Compound 2b: Bromine ($0.03 \mathrm{~mL}, 0.50 \mathrm{mmol}$) in hexane was added dropwise at room temperature to a stirred solution of $\mathbf{2}$ ($0.19 \mathrm{~g}, 0.50 \mathrm{mmol}$) in the same solvent ($\sim 10 \mathrm{~mL}$). A yellow solid began to separate instantly and the mixture was stirred for another 15 min to complete the reaction. The separated solid was dissolved in dichloromethane and the solution passed through a short silica column. Addition of petroleum ether ($60-80$) to the concentrated solution afforded $\mathbf{2 b}$ as yellow crystals. Yield: 0.25 g (94\%). M.p.: $165{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{OSTeBr}_{2}$ (539.74): C, $35.60 ; \mathrm{H}, 2.24$; Te, 23.64. Found: C, 34.90; H, 2.20; Te, 23.80. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.75$ (s, 2 H , CH_{2}), $7.63-8.27$ (m, 10H, aromatic protons) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 64.0\left(\mathrm{CH}_{2}\right), 126.6,126.8,127.4,128.2,128.8,129.5,131.8,132.7$, 133.0, 133.4, 134.3, 135.3, 137.1, 140.2 (aromatic carbons), 184.0 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 697 \mathrm{ppm}$.

Likewise, 3b was obtained as yellow crystals from 3 (0.19 g , $0.50 \mathrm{mmol})$ and $\mathrm{Br}_{2}(0.03 \mathrm{~mL}, 0.50 \mathrm{mmol})$. Yield: $0.23 \mathrm{~g}(87 \%)$. M.p.: $165{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSTeBr}_{2}$ (531.76): C, 33.88; H, 3.03; Te, 24.00. Found: C, 33.80; H, 3.12; Te, 24.10. ${ }^{1} \mathrm{H}$ NMR: $\delta 2.34$ (s, 3H, $p-$ Me), 2.75 (s, 3H,o-Me), 2.79 (s, 3H, o-Me), $5.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.98$ (s, $1 \mathrm{H}, m-\mathrm{H}$ mesityl ring), 7.06 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{m}-\mathrm{H}$ mesityl ring), 7.22 (t, 1 H , thiophene ring), $7.83,7.85(\mathrm{~d}, 1 \mathrm{H}$, thiophene ring), $7.86,7.87(\mathrm{~d}, 1 \mathrm{H}$, thiophene ring) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 21.0$ (p-Me), 23.3 (o-Me), 24.6 (o-Me), $61.2\left(\mathrm{CH}_{2}\right), 128.8,130.5,131.5,131.6,135.0,136.9,139.6$, 140.4, 141.2, 142.3 (aromatic carbons), 184.5 (CO) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 704$ ppm.

3.2.5. Metathetical reactions of 2a, 3a to 2c, 3c

Compound 2c: A solution of $2 \mathrm{aa}(0.23 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane (30 mL) was stirred with $\mathrm{KI}(0.17 \mathrm{~g}, 1.0 \mathrm{mmol})$ for 3 h . The potassium halides were removed by filtration. Concentration of the filtrate and addition of petroleum ether (40-60) afforded orange 2c. Use of NaI gave $\mathbf{2 c}$ in comparable yield. Yield: $0.23 \mathrm{~g}(71 \%)$. M.p.: $156{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{OSTe}_{2}$ (633.74): C, 30.32; H, 1.91; Te, 20.13. Found: C, 30.10; H, 1.98; Te, 20.18. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.1-8.5\left(\mathrm{~m}, 10 \mathrm{H}\right.$, aromatic protons) ppm. ${ }^{125} \mathrm{Te}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 606,984$ (0.75:0.25) ppm.

Compound $\mathbf{3 c}$ was prepared in a way similar by metathesis of $\mathbf{3 a}$ ($0.22 \mathrm{~g}, 0.50 \mathrm{mmol}$) with NaI or $\mathrm{KI}(1.0 \mathrm{mmol})$ as orange crystals. Yield: $0.19 \mathrm{~g}(64 \%)$. M.p.: $98{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OSTeI}_{2}$ (625.76): C, 28.79; H, 2.58; Te, 20.39. Found: C, 28.78; H, 2.60; Te, 20.38; ${ }^{1} \mathrm{H}$ NMR: $\delta 2.32$ ($\mathrm{s}, 3 \mathrm{H}, p-\mathrm{Me}$), 2.64 (s, 6H, o-Me), 5.73 (s, 2 H , CH_{2}), 6.93(s, 1H, m-H mesityl ring), 7.02 ($\mathrm{s}, 1 \mathrm{H}, m-\mathrm{H}$ mesityl ring), $7.22\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiophene ring), $7.82\left(\mathrm{~s}, 2 \mathrm{H}\right.$, thiophene ring) ppm. ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 21.0(p-\mathrm{Me}), 23.2$ (o-Me), 25.7 (o-Me), $58.9\left(\mathrm{CH}_{2}\right), 127.2$, 128.4, 130.7, 133.7, 133.4, 135.0, 136.9, 140.3, 142.1, 147.10 (aromatic carbons) ppm. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 590,885(1: 1) \mathrm{ppm}$.

Table 3
Crystal data and structure refinement details of $\mathbf{1}, \mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$.

	1	1b	2a	2b	3a
empirical formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Te}$	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Te}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{OSTe}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{OSTe}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{OSTe}$
formula mass $\left(\mathrm{g} \mathrm{~mol}^{-1}\right)$	377.92	537.74	450.82	539.74	442.84
temp (K)	110(2)	295(2)	295(2)	295(2)	295(2)
wavelength, λ (\AA)	0.71073	0.71073	0.71073	0.71073	0.71073
cryst syst	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
cryst size (mm^{3})	$0.48 \times 0.43 \times 0.18$	$0.88 \times 0.57 \times 0.31$	$0.51 \times 0.47 \times 0.36$	$0.51 \times 0.42 \times 0.35$	$0.56 \times 0.21 \times 0.18$
space group	P 1 21/c 1	P-1	P 1 21/n 1	P 1 21/n 1	P 1 21/c 1
a (A)	11.4870(3)	7.1593(4)	9.5437(2)	9.6524(4)	8.8076(2)
b (\AA)	7.8833(3)	9.7490(5)	13.5609(3)	13.5973(8)	13.1440(3)
$c(\AA)$	14.7573(4)	12.0975(6)	13.0199(3)	13.3312(6)	15.0915(4)
α (deg)	90	109.268(4)	90	90	90
β (deg)	106.206(3)	96.401(4)	107.763(3)	108.220(4)	101.641(2)
I (deg)	90	94.559(4)	90	90	90
$V\left(\AA^{3}\right)$	1283.26(7)	785.98(7)	1604.72(6)	1661.95(14)	1711.17(7)
Z	4	2	4	4	4
$\rho_{\text {calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.956	2.272	1.866	2.157	1.719
abs coeff (mm^{-1})	2.629	7.235	2.311	6.719	2.165
$F(000)$	728	504	872	1016	864
index ranges	$-17 \leq h \leq 15$	$-10 \leq h \leq 10$	$-14 \leq h \leq 14$	$-14 \leq h \leq 14$	$-12 \leq h \leq 7$
	$-9 \leq k \leq 11$	$-14 \leq k \leq 10$	$-20 \leq k \leq 19$	$-12 \leq k \leq 19$	$-18 \leq k \leq 19$
	$-16 \leq l \leq 22$	$-17 \leq l \leq 18$	$-19 \leq l \leq 19$	$-20 \leq l \leq 16$	$-18 \leq l \leq 22$
no. of rflns collected	8934	9461	16172	13556	14373
no. of indep rflns	$4234(\mathrm{R}$ (int) $=0.0279$)	$\begin{aligned} & 5040 \\ & (\mathrm{R}(\text { int })=0.0519) \end{aligned}$	$\begin{aligned} & 5418 \\ & (\mathrm{R}(\text { int })=0.0265) \end{aligned}$	$\begin{aligned} & 5469 \\ & (\mathrm{R}(\text { int })=0.0416) \end{aligned}$	$\begin{aligned} & 5678 \\ & (\mathrm{R}(\text { int })=0.0238) \end{aligned}$
completeness to $\theta_{\text {max }}$ (\%)	99.3	98.4	99.3	99.0	99.1
abs cor	Semi-empirical from equivalents	Analytical	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
max, min transmission	1.00000, 0.38285	0.174, 0.047	1.00000, 0.82083	1.00000, 0.12410	1.00000, 0.42309
refinement method	Full-matrix leastsquares on F2				
no. of data/restraints/ params	4234/0/154	5040/0/188	5418/0/190	5469/0/180	5678/0/185
goodness of fit on F^{2}	0.976	0.942	1.076	0.951	1.017
final R indices ($I>2 \sigma(I)$)	$\begin{aligned} & \mathrm{R} 1=0.0267 \\ & \mathrm{wR2}=0.0577 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0485, \\ & \mathrm{wR2}=0.1051 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0353 \\ & \mathrm{wR2}=0.0966 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0448 \\ & \mathrm{wR2}=0.1057 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0313 \\ & \text { wR2 }=0.0652 \end{aligned}$
R indices (all data)	$\mathrm{R} 1=0.0410$	$\mathrm{R} 1=0.0908$	$\mathrm{R} 1=0.0570$	$\mathrm{R} 1=0.0833$	$\mathrm{R} 1=0.0524$
	$\mathrm{wR2}=0.0605$	$\mathrm{wR2}=0.1164$	$\mathrm{wR2}=0.1021$	$\mathrm{wR} 2=0.1138$	$\mathrm{wR2}=0.0700$
largest diff peak/hole (e \AA^{-3})	0.658/-0.776	1.361/-0.974	1.122/-1.048	1.376/-1.260	0.595/-0.504
extinction coefficient		0.0072(9)			0.0034(4)

3.2.6. Alternative Procedures for synthesis of $\mathbf{2 b}$ and $\mathbf{3 b}$

To a solution of ArTeBr [prepared in situ by mixing dichloromethane solutions of $\mathrm{Npl}_{2} \mathrm{Te}_{2}(0.51 \mathrm{~g}, 1.0 \mathrm{mmol})$ or $\mathrm{Mes}_{2} \mathrm{Te}_{2}(0.49 \mathrm{~g}$, $1.0 \mathrm{mmol})$ and $\mathrm{Br}_{2}(0.05 \mathrm{~mL}, 1.0 \mathrm{mmol})$ at room temperature], $\alpha-$ bromoacetylthiophene ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added at room temperature under stirring. The reaction mixture was stirred for 24 h at room temperature and filtered to remove a black residue. The dark brown filtrate was passed through a small silica column, concentrated and an equal volume of petroleum ether (60-80) added. Yellow crystals separated on overnight cooling in a refrigerator. Yield: 2b, 0.67 g (60%); 3b $0.53 \mathrm{~g}(50 \%)$.

3.2.7. Crystallography

Single crystals suitable for X-ray crystallography were grown by slow evaporation of dichloromethane solutions of $\mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 a}$. In case of the telluride 1 , cooling $\left(-10^{\circ} \mathrm{C}\right)$ of its solution in a mixture of dichloromethane/diethylether (1:10) resulted in the desired crystals. Intensity data were collected on an Oxford Diffraction Gemini CCD diffractometer with graphite-monochromated Mo-K α ($0.7107 \AA$) radiation. Data were reduced and corrected for absorption using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm in the CrysAlisPro, Oxford Diffraction Ltd., Version 1.171 .33 .34 d program. The structures were solved by direct methods and difference Fourier synthesis using SHELXS-97 and ORTEP figures generated using the program WinGX 2002 [23,24].

Full-matrix least-squares refinements on F^{2}, using all data, were carried out with anisotropic displacement parameters applied to non-hydrogen atoms. Hydrogen atoms attached to carbon were included in geometrically calculated positions using a riding model and were refined isotropically. Crystal data and structure refinement details are given in Table 3. ORTEP views of the molecular structures are depicted in Figs. 1-5, showing 30% (1b, 2a, 2b, 3a) and 50% (1) probability displacement ellipsoids, omitting H atoms for clarity, and captioned with the geometrical parameters relevant to the primary geometry.

Acknowledgments

Financial assistance by the Department of Science and Technology, Government of India, New Delhi, is gratefully acknowledged.

Appendix A. Supplementary material

CCDC 780935, 780936, 780937, 780938, and 780939, contain the supplementary crystallographic data for $\mathbf{1}, \mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{3 a}$, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

The centrosymmetric dimeric supramolecular units identified in the crystal lattice of $\mathbf{1 b}$ and $\mathbf{1}$ (Figures S1 and S2) and parametric details of weak H -bonding $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Br}$ in tabular form (Table S1) are given as supplementary information, can be found in the online version, at doi:10.1016/j.jorganchem.2010.07.025.

References

[1] L. Engman, M.P. Cava, Organometallics 1 (1982) 470-473.
[2] L. Engman, M.P. Cava, J. Org. Chem. 47 (1982) 3946-3949.
[3] L. Engman, Organometallics 5 (1986) 427-431.
[4] N. Petragnani, Tetrahedron 12 (1961) 219-225.
[5] H.A. Stefani, J.V. Comasseto, N. Petragnani, Synth. Commun. 17 (1987) 443.
[6] I.D. Sadekov, A.V. Zakharov, A.A. Maksimenko, Sulfur Reports. 23 (2002) 125-207.
[7] A.K.S. Chauhan, P. Singh, A. Kumar, R.C. Srivastava, R.J. Butcher, A. Duthie, Organometallics 26 (2007) 1955-1959.
[8] A.K.S. Chauhan, P. Singh, R.C. Srivastava, A. Duthie, A. Voda, Dalton Trans. (2008) 4023-4028.
[9] G.T. Morgan, O.C. Elvins, J. Chem. Soc. 127 (1925) 2625.
[10] A. Ishii, J. Nakayama, Y. Horikawa, M. Hoshino, Sulfur Lett. 10 (1989) 71-77.
[11] K.K. Verma, S. Garg, Synth. React. Inorg. Met.-Org. Chem. 24 (1994) 647, 1631.
[12] J.C. Dewan, J. Silver, J. Chem. Soc. Dalton (1977) 644-647 and references therein.
[13] C.L. Raston, R.J. Secomb, A.H. White, J. Chem. Soc. Dalton (1976) 2307-2310.
[14] H.J. Gysling, H.R. Luss, S.A. Gardner, J. Organomet. Chem 184 (1980) 417-431.
[15] J. Farran, A. Alvarez-Lorena, J.F. Pinella, G. Germain, L. Torres-Castellanos, Z. Kristallogr. 210 (1995) 65.
[16] M. Asahara, M. Tanaka, T. Erabi, M. Wada, J. Chem. Soc. Dalton Trans. (2000) 3493-3499.
[17] A.K.S. Chauhan, A. Kumar, R.C. Srivastava, R.J. Butcher, J. Organomet. Chem. 658 (2002) 169-175.
[18] A.K.S. Chauhan, A. Kumar, R.C. Srivastava, J. Beckmann, A. Duthie, R.J. Butcher, J. Organomet. Chem. 689 (2004) 345-351.
[19] A.K.S. Chauhan, Anamika, A. Kumar, R.C. Srivastava, R.J. Butcher, J. Organomet. Chem. 690 (2005) 313-321.
[20] S. Misra, A.K.S. Chauhan, P. Singh, R.C. Srivastava, A. Duthie, R.J. Butcher, Dalton Trans. (2010) 2637-2643.
[21] J. Zukerman-Schpector, R.L. Camillo, I. Caracelli, J. Comasseto, L.O.R. Cunha, Rev. Roumaine de Chim. 47 (2003) 1021-1025.
[22] A.K.S. Chauhan, P. Singh, R.C. Srivastava, R.J. Butcher, A. Duthie, J. Organomet. Chem. 695 (2010) 2118-2125.
[23] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837-838.
[24] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.

[^0]: * Corresponding author.

 E-mail address: akschauhan2003@yahoo.co.in (A.K.S. Chauhan).

